Eco-P colonies

Luděk Cienciala & Lucie Ciencialová

Institute of Computer Science Silesian University in Opava Bezručovo nám.13, 746 01 Opava, Czech Republic

ludek.cienciala@fpf.slu.cz, l

ucie.ciencialova@fpf.slu.cz

Eco-P colony

- A team of one membrane agents placed in dynamical environment
- Eco-P colony has only one **alphabet** a set of objects, *e* is environmental object and *f* is final object
- A mechanism of changes of the environment is based on **OL scheme**
- Agents are working according to generating and consuming programs

Eco-P colony Π

is a structure

$\Pi = (A, e, f, V_{E}, D_{E}, B_{1}, ..., B_{n}),$

- A is an alphabet
- *e* is an environmental object
- f is a final object
- V_E is an initial content of the environment
- *D_E* is 0L scheme of the environment
- B_1, \dots, B_n are agents placed in the environment
- Agent B_i is a pair (O_i, P_i) where O_i is a multiset of objects, $|O_i| = 2$, and P_i is set of consuming or generating programs.

The computation

- Maximally parallel
- It starts from initial configuration (given by definition) and it ends when no one agent can apply any of its programs.
- The result is the number of final objects present in the environment at the end of computation

Notation

NEPCOL x,y,z (n, h)

x – a kind of agents in eco-P colony – s = sender, c = consumer

- y "activity" of the environment active or passive
- z = ini if the eco-P colony at the beginning of computation contains objects different from e.
- *n* degree of eco-P colony (the number of agents)
- *h* height of eco-P colony (the maximal number of programs associated with one agent)

Sender

Agent sender generates object according to its content, this new object it places to the environment in the next step of computation.

Regular grammar

In each step of computation grammar generates one terminal from only one nonterminal.

$\langle A \rightarrow aB; x \text{ out} \rangle$

 $A \rightarrow aB$

Consumer

Agent consumer according to its content takes object from the environment and it changes its content.

Finite automaton

In every step of
computation
automaton reads one
symbol from input tape
and changes its state.

Consumer

Finite automaton

$\langle Ax \rightarrow B; a in \rangle$

δ(A,a)=B

 Eco-P colonies with passive environment and with three agents consumers and senders can generate the set of recursively enumerable sets of natural numbers

NEPCOL_{sc;passive}(3; *) = NRE

What is new ... • NEPCOL $_{c;active;ini}(2;*) = NRE$ • NEPCOL $_{sc;passive}(2;*) \supseteq NRM_{pb}$

Conclusion

• NEPCOL sc;passive(2; *) = ?

Description and complexity of computation ?

Thank you for your attention.